Increased transsulfuration mediates longevity and dietary restriction in Drosophila.

نویسندگان

  • Hadise Kabil
  • Omer Kabil
  • Ruma Banerjee
  • Lawrence G Harshman
  • Scott D Pletcher
چکیده

The mechanisms through which dietary restriction enhances health and longevity in diverse species are unclear. The transsulfuration pathway (TSP) is a highly conserved mechanism for metabolizing the sulfur-containing amino acids, methionine and cysteine. Here we show that Drosophila cystathionine β-synthase (dCBS), which catalyzes the rate-determining step in the TSP, is a positive regulator of lifespan in Drosophila and that the pathway is required for the effects of diet restriction on animal physiology and lifespan. dCBS activity was up-regulated in flies exposed to reduced nutrient conditions, and ubiquitous or neuron-specific transgenic overexpression of dCBS enhanced longevity in fully fed animals. Inhibition of the TSP abrogated the changes in lifespan, adiposity, and protein content that normally accompany diet restriction. RNAi-mediated knockdown of dCBS also limited lifespan extension by diet. Diet restriction reduced levels of protein translation in Drosophila, and we show that this is largely caused by increased metabolic commitment of methionine cycle intermediates to transsulfuration. However, dietary supplementation of methionine restored normal levels of protein synthesis to restricted animals without affecting lifespan, indicating that global reductions in translation alone are not required for diet-restriction longevity. Our results indicate a mechanism by which dietary restriction influences physiology and aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits

Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lya...

متن کامل

Dietary switch reveals fast coordinated gene expression changes in Drosophila melanogaster

Dietary restriction (DR) reduces age-specific mortality and increases lifespan in many organisms. DR elicits a large number of physiological changes, however many are undoubtedly not related to longevity. Whole-genome gene expression studies have typically revealed hundreds to thousands of differentially expressed genes in response to DR, and a key open question is which subset of genes mediate...

متن کامل

Drosophila lifespan control by dietary restriction independent of insulin-like signaling

Reduced insulin/insulin-like growth factor (IGF) signaling may be a natural way for the reduction of dietary nutrients to extend lifespan. While evidence challenging this hypothesis is accumulating with Caenorhabditis elegans, for Drosophila melanogaster it is still thought that insulin/IGF and the mechanisms of dietary restriction (DR) might as yet function through overlapping mechanisms. Here...

متن کامل

Altered dietary methionine differentially impacts glutathione and methionine metabolism in long-living growth hormone-deficient Ames dwarf and wild-type mice

BACKGROUND Extending mammalian health span and life span has been achieved under a variety of dietary restriction protocols. Reducing the intake of a specific amino acid has also been shown to extend health and longevity. We recently reported that methionine (MET) restriction is not effective in life span extension in growth hormone (GH) signaling mutants. To better understand the apparent nece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 40  شماره 

صفحات  -

تاریخ انتشار 2011